3-Phase Current Formula:
From: | To: |
Definition: This calculator converts apparent power in kilovolt-amps (kVA) to current in amps for three-phase electrical systems.
Purpose: It helps electricians and engineers determine the current draw of three-phase equipment based on its power rating.
The calculator uses the formula:
Where:
Explanation: The formula converts kVA to watts (×1000), then divides by the product of voltage and √3 to account for three-phase power distribution.
Details: Accurate current calculation ensures proper sizing of circuit breakers, wires, and transformers in three-phase systems.
Tips: Enter the apparent power in kVA and line voltage (default 400V for many industrial systems). All values must be > 0.
Q1: What's the difference between line and phase voltage?
A: Line voltage is between any two phases, while phase voltage is between a phase and neutral. For delta systems they're equal; for wye, line voltage is √3 × phase voltage.
Q2: Why √3 in the formula?
A: The √3 factor accounts for the 120° phase difference in three-phase systems, converting between line and phase quantities.
Q3: What voltage should I use?
A: Common three-phase voltages are 208V, 400V, 480V - use your system's line-to-line voltage.
Q4: Does this work for single-phase systems?
A: No, for single-phase use I = kVA × 1000 / V (without the √3 factor).
Q5: How does power factor affect this?
A: This calculates current based on apparent power (kVA). For real power (kW), divide by power factor: I = (kW × 1000) / (V × √3 × PF).